
Page of 1 73 Paladin Blockchain Security

Smart Contract
Security Assessment

For Smardex.io
19 July 2023

paladinsec.co info@paladinsec.co

Final Report

Table of Contents 
 
Table of Contents	
2

Disclaimer	
5

1 Overview	
6

1.1 Summary	
6

1.2 Contracts Assessed	
7

1.3 Findings Summary	
9

1.3.1 RewardManager	
10

1.3.2 FarmingRange	
10

1.3.3 Staking	
11

1.3.4 AutoSwapper	
11

1.3.5 SmardexRouter	
11

1.3.6 BytesLib	
12

1.3.7 Path	
12

1.3.8 PoolAddress	
12

1.3.9 PoolHelpers	
12

1.3.10 SmardexPair	
13

1.3.11 SmardexFactory	
13

1.3.12 SmardexLibrary	
13

1.3.13 TransferHelper	
14

1.3.14 SmardexToken	
14

1.3.15 AutoSwapperL2	
14

1.3.16 FarmingRangeL2Arbitrum	
14

1.3.17 RewardManagerL2	
14

1.3.18 RewardManagerL2Arbitrum	
15

2 Findings	
16

2.1 Rewards/RewardManager	
16

2.1.1 Issues & Recommendations	
17

Page of 2 73 Paladin Blockchain Security

2.2 Rewards/FarmingRange	
19

2.2.1 Privileged Functions	
20

2.2.2 Issues & Recommendations	
21

2.3 Rewards/Staking	
35

2.3.1 Issues & Recommendations	
36

2.4 Rewards/AutoSwapper	
40

2.4.1 Issues & Recommendations	
41

2.5 Periphery/SmardexRouter	
45

2.5.1 Issues & Recommendations	
46

2.6 Periphery/BytesLib	
50

2.6.1 Issues & Recommendations	
51

2.7 Periphery/Path	
52

2.7.1 Issues & Recommendations	
53

2.8 Periphery/PoolAddress	
54

2.8.1 Issues & Recommendations	
54

2.9 Periphery/PoolHelpers	
55

2.9.1 Issues & Recommendations	
55

2.10 Core/SmardexPair	
56

2.10.1 Issues & Recommendations	
57

2.11 Core/SmardexFactory	
61

2.11.1 Privileged Functions	
61

2.11.2 Issues & Recommendations	
62

2.12 Core/SmardexLibrary	
64

2.12.1 Issues & Recommendations	
66

2.13 Core/TransferHelper	
67

2.13.1 Issues & Recommendations	
67

2.14 Core/SmardexToken	
68

2.14.1 Issues & Recommendations	
68

2.15 AutoSwapperL2	
69

2.15.1 Issues & Recommendations	
69

Page of 3 73 Paladin Blockchain Security

2.16 FarmingRangeL2Arbitrum	
70

2.16.1 Privileged Functions	
70

2.16.2 Issues & Recommendations	
70

2.17 RewardManagerL2	
71

2.17.1 Issues & Recommendations	
71

2.18 RewardManagerL2Arbitrum	
72

2.18.1 Issues & Recommendations	 72

Page of 4 73 Paladin Blockchain Security

Disclaimer

Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity
of and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in
the codes that were provided for the scope of this audit. This audit report does not constitute
agreement, acceptance or advocation for the Project that was audited, and users relying on this
audit report should not consider this as having any merit for financial advice in any shape, form or
nature. The contracts audited do not account for any economic developments that may be pursued
by the Project in question, and that the veracity of the findings thus presented in this report relate
solely to the proficiency, competence, aptitude and discretion of our independent auditors, who
make no guarantees nor assurance that the contracts are completely free of exploits, bugs,
vulnerabilities or deprecation of technologies. Further, this audit report shall not be disclosed nor
transmitted to any persons or parties on any objective, goal or justification without due written
assent, acquiescence or approval by Paladin.

All information provided in this report does not constitute financial or investment advice, nor
should it be used to signal that any persons reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report. Information is
provided ‘as is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the
contracts audited. In no event will Paladin or its partners, employees, agents or parties related to
the provision of this audit report be liable to any parties for, or lack thereof, decisions and/or
actions with regards to the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to
cryptocurrencies are highly volatile and speculative by nature. All reasonable due diligence and
safeguards may yet be insufficient, and users should exercise considerable caution when
participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate
recommendations to the Project team with respect to the rectification, amendment and/or revision
of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the sole
responsibility of the Project team to sufficiently test and perform checks, ensuring that the
contracts are functioning as intended, specifically that the functions therein contained within said
contracts have the desired intended effects, functionalities and outcomes of the Project team.

Paladin retains the right to re-use any and all knowledge and expertise gained during the audit
process, including, but not limited to, vulnerabilities, bugs, or new attack vectors. Paladin is
therefore allowed and expected to use this knowledge in subsequent audits and to inform any third
party, who may or may not be our past or current clients, whose projects have similar
vulnerabilities. Paladin is furthermore allowed to claim bug bounties from third-parties while doing
so. 

Page of 5 73 Paladin Blockchain Security

1	 	 Overview

This report has been prepared for Smardex.io on the Ethereum network. Paladin
provides a user-centred examination of the smart contracts to look for
vulnerabilities, logic errors or other issues from both an internal and external
perspective.

1.1	 	 Summary

Project Name Smardex.io

URL https://smardex.io/

Network Ethereum, Polygon, BNB Smart Chain, Arbitrum

Language Solidity

Preliminary https://github.com/SmarDex-Dev/smart-contracts/tree/
15e4dea57745b30a1f65083930300442b1661a85

Resolution 1 https://github.com/SmarDex-Dev/smardex-contract-fix-
paladin-09.06.2023/tree/e07745bcad54252060f115db56b8eba50206ccf9

Resolution 2 Re-Audit Upgradable fees 
https://github.com/SmarDex-Dev/smart-contracts-updatable-fees/
commit/23045fa2fef2e7a03f98b6632d520f393a904213

Audit L2 Contracts 
https://github.com/SmarDex-Dev/smart-contracts-updatable-fees/blob/
3f73b2298e438fdb879c451bcb5c404cd56b7642

Resolution 2 fixes 
https://github.com/SmarDex-Dev/smart-contracts-updatable-fees/
commit/dc05e390fbc86cd5ca9919a44f14dabd300389c4

Page of 6 73 Paladin Blockchain Security

https://smardex.io/
https://github.com/SmarDex-Dev/smart-contracts/tree/15e4dea57745b30a1f65083930300442b1661a85
https://github.com/SmarDex-Dev/smardex-contract-fix-paladin-09.06.2023/tree/e07745bcad54252060f115db56b8eba50206ccf9
https://github.com/SmarDex-Dev/smart-contracts-updatable-fees/commit/23045fa2fef2e7a03f98b6632d520f393a904213
https://github.com/SmarDex-Dev/smart-contracts-updatable-fees/blob/3f73b2298e438fdb879c451bcb5c404cd56b7642
https://github.com/SmarDex-Dev/smart-contracts-updatable-fees/commit/dc05e390fbc86cd5ca9919a44f14dabd300389c4

1.2	 	 Contracts Assessed

Name Contract
Live Code
Match

RewardManager ETH:
0xC049c7fE5EAa024095861212BD8a8E8Df88a2b1f

FarmingRange ETH: 
0x7d85C0905a6E1Ab5837a0b57cD94A419d3a77523

Polygon: 
0x7DB73A1e526db36c40e508b09428420c1fA8e46b

BSC:
0xb891Aeb2130805171796644a2af76Fc7Ff25a0b9

Staking 0x80497049b005Fd236591c3CD431DBD6E06eB1A31

AutoSwapper 0x865d61582abc2CCd85549774CEe171280fE82e3e

Router ETH:
0xEf2f9b48d7EC80440Ab4573dF1A2aBDBE06D3f60

Polygon: 
0xA8EF6FEa013034E62E2C4A9Ec1CDb059fE23Af33

BSC: 
0x391BeCc8DAaf32b9ba8e602e9527Bf9DA04C8deb

Arbitrum: 
0xdd4536dD9636564D891c919416880a3e250f975A

BytesLib Dependency

Path Dependency

PoolAddress Dependency

PoolHelpers Dependency

SmardexPair Deployed by SmardexFactory

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

Page of 7 73 Paladin Blockchain Security

SmardexFactory ETH: 
0x7753F36E711B66a0350a753aba9F5651BAE76A1D

Polygon: 
0x9A1e1681f6D59Ca051776410465AfAda6384398f

BSC: 
0xA8EF6FEa013034E62E2C4A9Ec1CDb059fE23Af33

Arbitrum: 
0x41A00e3FbE7F479A99bA6822704d9c5dEB611F22

SmardexLibrary Dependency

TransferHelper Dependency

SmardexToken ETH: 
0x5DE8ab7E27f6E7A1fFf3E5B337584Aa43961BEeF

Polygon: 
0x6899fAcE15c14348E1759371049ab64A3a06bFA6

BSC: 
0xFdc66A08B0d0Dc44c17bbd471B88f49F50CdD20F

Arbitrum: 
0xabD587f2607542723b17f14d00d99b987C29b074

AutoSwapperL2 Polygon: 
0x8ef71fDe0681f567d241A2Cb7f2aE46d6D709D30

BSC: 
0x41A00e3FbE7F479A99bA6822704d9c5dEB611F22

Arbitrum: 
0xd978bb7a7aE5b01116D1bD714fEDd1B77Ca9e75b

FarmingRangeL2Arbitr
um

0x53D165DF0414bD02E91747775450934BF2257f69

RewardManagerL2 Polygon: 
0x391BeCc8DAaf32b9ba8e602e9527Bf9DA04C8deb

BSC: 
0x8ef71fDe0681f567d241A2Cb7f2aE46d6D709D30

RewardManagerL2Arbit
rum

0x5C622Dcc96b6D96ac6c154f99CF081815094CBC9

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

Page of 8 73 Paladin Blockchain Security

1.3	 	 Findings Summary

Classification of Issues

 

Severity Found Resolved
Partially
Resolved

Acknowledged
(no change made)

5 3 1 1

11 7 1 3

17 12 - 5

17 13 - 4

Total 50 35 2 13

 Medium

 Low

 Informational

 High

Severity Description

Exploits, vulnerabilities or errors that will certainly or probabilistically lead
towards loss of funds, control, or impairment of the contract and its
functions. Issues under this classification are recommended to be fixed with
utmost urgency.

Bugs or issues that may be subject to exploit, though their impact is
somewhat limited. Issues under this classification are recommended to be
fixed as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the
project or its users. Issues under this classification are recommended to be
fixed nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level
of risk, if any.

 Low

 Medium

 Informational

 High

Page of 9 73 Paladin Blockchain Security

1.3.1	 RewardManager

1.3.2	 FarmingRange

ID Severity Summary Status

01 safeApprove should be used within the RewardManager

02 _startFarmingCampaign can be set to a value in the past

03 Typographical error

LOW RESOLVED

INFO RESOLVED

LOW RESOLVED

ID Severity Summary Status

04 The contract owner can steal all staking tokens

05 First depositor can steal reward tokens

06 Contract does not support tokens with a fee on transfer

07 Owner can steal all rewards

08 Adding too many reward epochs can result in a DoS

09 Consecutive calls of upgradePrecision can result in a DoS

10 setRewardInfoLimit can cause DoS

11 Rewards can get stuck in the contract

12 Reentrancy call allows owner to add false rewardInfo

13 totalRewards is not decreased for next round’s refund

14 Lack of validation

15 Lack of safeTransfer usage

16 startBlock can be set to a value in the past

17 Unlisted campaigns can be updated

18 The CEI pattern is not adhered to

19 Gas optimizations

20 Lack of events for upgradePrecision

RESOLVED

RESOLVED

LOW

RESOLVED

MEDIUM

LOW

RESOLVED

INFO

MEDIUM

INFO

RESOLVED

MEDIUM

RESOLVED

RESOLVED

INFO

LOW

RESOLVED

RESOLVED

ACKNOWLEDGED

INFO

RESOLVED

MEDIUM

PARTIAL

LOW

HIGH

RESOLVED

LOW

HIGH

RESOLVED

MEDIUM

RESOLVED

RESOLVED

HIGH

RESOLVED

Page of 10 73 Paladin Blockchain Security

1.3.3	 Staking

1.3.4	 AutoSwapper

1.3.5	 SmardexRouter

ID Severity Summary Status

21 The first depositor can steal the shares of subsequent depositors

22 Funds can be stuck in the contract forever

23 Admin injections can be frontran

24 Lack of validation

25 Contract does not adhere to the CEI pattern

26 _sharesToTokens is slightly flawed

HIGH

MEDIUM

RESOLVED

RESOLVED

PARTIAL

LOW

INFO

INFO RESOLVED

RESOLVED

ACKNOWLEDGED

HIGH

ID Severity Summary Status

27 The slippage calculation is flawed

28 Lack of validation

29 Arbitrage opportunities in increased trading periods

30 Lack of events for executeWork

MEDIUM

RESOLVED

ACKNOWLEDGEDLOW

ACKNOWLEDGED

RESOLVED

INFO

LOW

ID Severity Summary Status

31 Ether is refunded to the _to address

32 Router does not support tokens with a fee on transfer

33 getAmountIn and getAmountOut might lead to wrong values

34 Funds can be stuck in the router

35 Unprivileged ETH can be stolen

ACKNOWLEDGED

ACKNOWLEDGED

MEDIUM

LOW

RESOLVED

RESOLVED

MEDIUM

RESOLVEDMEDIUM

INFO

Page of 11 73 Paladin Blockchain Security

1.3.6	 BytesLib

1.3.7	 Path

1.3.8	 PoolAddress

No issues found.

1.3.9	 PoolHelpers

No issues found.

ID Severity Summary Status

36 toUint24 is unusedINFO RESOLVED

ID Severity Summary Status

37 Gas optimization

38 Typographical error

INFO RESOLVED

INFO RESOLVED

Page of 12 73 Paladin Blockchain Security

1.3.10	 SmardexPair

1.3.11	 SmardexFactory

1.3.12	 SmardexLibrary

ID Severity Summary Status

39 The protection for _feeToSwap does not suffice

40 _feeToSwap can be subjected to sandwich attacks

41 _feeToSwap can be subjected to gas griefing

42 Gas optimization

43 Typographical issue

ACKNOWLEDGED

ACKNOWLEDGED

INFO

LOW ACKNOWLEDGED

INFO RESOLVED

MEDIUM

INFO

RESOLVED

ID Severity Summary Status

44 Missing safeguards on setFeeToSetter

45 Owner can redirect all fees to their own address

46 Lack of events for setFeeTo and setFeeToSetterINFO RESOLVED

LOW

INFO

RESOLVED

ACKNOWLEDGED

ID Severity Summary Status

47 Swap logic limits swapsLOW ACKNOWLEDGED

Page of 13 73 Paladin Blockchain Security

1.3.13	 TransferHelper

No issues found.

1.3.14	 SmardexToken

1.3.15	 AutoSwapperL2

No issues found.

1.3.16	 FarmingRangeL2Arbitrum

No issues found.

1.3.17	 RewardManagerL2

ID Severity Summary Status

48 Outdated ERC20 Permit implementationLOW RESOLVED

ID Severity Summary Status

49 The Staking contract should not be deployed to L2 chainsLOW ACKNOWLEDGED

Page of 14 73 Paladin Blockchain Security

1.3.18	 RewardManagerL2Arbitrum

ID Severity Summary Status

50 The Staking contract should not be deployed to L2 chainsLOW ACKNOWLEDGED

Page of 15 73 Paladin Blockchain Security

2	 	 Findings

2.1	 Rewards/RewardManager

RewardManager is a simple initiator contract which handles the deployment of the
FarmingRange and Staking contracts. During the contract deployment, it
automatically deploys both of these contracts and creates the first campaign within
the FarmingRange contract which uses the Staking contract as the staking token
and the SmarDex tokens as the reward token.

Besides this deployment, this contract is meant to store all reward tokens for the
FarmingRange contract and eventually distributes them upon each campaign
configuration via resetAllowance.

Page of 16 73 RewardManager Paladin Blockchain Security

2.1.1		 Issues & Recommendations

Issue #01 safeApprove should be used within the RewardManager

Severity

Description RewardManager may not be able to approve tokens that do not
follow the ERC20 standard. For example, USDT on mainnet would
revert as it does not return a boolean as expected.

Recommendation Consider using safeApprove instead. Note that safeApprove needs
to first be set to 0 before changing its value to a value greater than
0.

Resolution

LOW SEVERITY

RESOLVED

Issue #02 _startFarmingCampaign can be set to a value in the past

Severity

Description There is no check that _startFarmingCampaign is set to a value in
the future. If this is accidentally set to a value in the past, users will
receive rewards retroactively, especially since the _startTime
cannot be updated anymore within the addRewardInfo function.

Recommendation Consider validating that _startFarmingCampaign can only be set to
a value in the future.

Resolution RESOLVED

LOW SEVERITY

Page of 17 73 RewardManager Paladin Blockchain Security

Issue #03 Typographical error

Severity

Description /** * @title RewardManager * @notice RewardManager handles de

creation of the contract staking and farming, automatically

create a campaignInfo * in the farming for the staking, at

slot 0 and initialize farming. The RewardManager is the owner

of the funds in * the FarmingRange, only the RewardManager is

capable of sending funds to be farmed and only the

RewardManager will get * the funds back when updating of

removing campaigns. */

de should be corrected to the.

Recommendation Consider fixing the typographical error.

Resolution

INFORMATIONAL

RESOLVED

Page of 18 73 RewardManager Paladin Blockchain Security

2.2	 	Rewards/FarmingRange

FarmingRange is a highly customized masterchef-like contract where users can
stake different staking tokens in order to receive different reward tokens. The main
logic is handled by different campaigns.

The contract owner can add different campaignInfo[s] where each campaign
represents a pool with a staking token and a corresponding reward token. After a
campaign is successfully added, the owner can then assign rewards to this
campaign via addRewardInfo — this can be done in multiple block ranges whereas
the reward amount to be distributed is calculated via rewardPerBlock *
(endBlock - startBlock). Each block range can have a totally different
rewardPerBlock and block duration assigned, however, these block ranges must be
sequential, i.e., the following block can only start after the current block has ended.

The owner can change rewardsPerBlock and endTime of the current round or any
future rounds for any campaign, which will then refund tokens to the
RewardManager or require more tokens to be transferred in. When the endTime is
increased, the block range for the next round will be decreased, however, rewards
will not be decreased, as the logic simply increases the rewardPerBlock for the
next round in order to accommodate the block range decrease.

Users can participate in these campaigns by depositing in the different campaignIds
which start at slot 1 (the zero slot is already occupied for the Staking contract).
Initially, each campaign can have up to 52 rounds, however, the owner can change
the rewardInfoLimit arbitrarily which potentially allows for more rounds.

After the owner has added a campaign, users can stake in it, however, they will not
receive a reward if there are no added reward rounds.

Page of 19 73 FarmingRange Paladin Blockchain Security

2.2.1	 Privileged Functions

- transferOwnership

- renounceOwnership

- upgradePrecision

- setRewardManager

- setRewardInfoLimit

- addCampaignInfo

- addRewardInfo

- addRewardInfoMultiple

- updateRewardInfo

- updateRewardMultiple

- updateCampaignsReward

- removeLastRewardInfo

Page of 20 73 FarmingRange Paladin Blockchain Security

2.2.2	 Issues & Recommendations

Issue #04 The contract owner can steal all staking tokens

Severity

Description The contract owner has the ability to steal staking tokens via a
consecutive process of function calls.

At first glance, it seems impossible for the owner to steal any tokens
because even if any stakingToken is used as the rewardToken, the
RewardManager would need to transfer in the correct amount in
order to allocate rewards to a pool. Additionally, the removal or
update of a reward round would only transfer the same / leftover
amount out, which was transferred in by the admin.

However, we found two methods to exploit this flow in order to steal
any staking token from the user.

Consider the first PoC:

1. The owner sends a specific amount of USDT-USDC LP to the
RewardManager.

2. The owner creates a dummy pool with USDT-USDC as a reward
token.

3. The owner adds a campaign which takes exact the same amount
as rewards as sent to the RewardManager and deposits into this
pool.

4. The owner now calls upgradePrecision which increases the
accRewardPerShare by 1e8, essentially increasing the
accumulated USDT-USDC reward as well.

5. The owner has now successfully increased the allocated
rewards, which means that USDT-USDC from users will be used
as reward for the allocated share of the owner.

HIGH SEVERITY

Page of 21 73 FarmingRange Paladin Blockchain Security

Consider the second PoC which is a bit more sophisticated:

1. The owner creates a standard campaign with an LP-Token and a
reward token. For the sake of simplicity, let's just take USDC/
USDT-LP as staking token and SmarDex token as reward token.
This campaign has ID 1.

2. Charles deposits 500_000 USDC/USDT LP into campaignID 1 in
order to accumulate SmarDex tokens.

3. The contract owner creates a new campaign with a dummy
token and USDC/USDT-LP as reward token.

4. The owner deposits 500_000 USDC/USDT-LP into the
RewardManager contract in order to seed the reward
distribution.

5. The owner creates a reward round for this dummy campaign
with an arbitrary block range and an arbitrary rewardPerBlock
parameter, let’s say 100 blocks range and 5000 tokens per
block. This now transfers 500_000 LP tokens into the
FarmingRange contract in order to distribute them as a reward.

6. The owner now changes the RewardManager to a malicious
contract that has a) a withdrawal method and b) an external call
within the resetAllowance function. This RewardManager has
exactly 500 LP tokens as a balance but has none of them
approved to the FarmingRange contract.

7. The owner now calls updateRewardInfo with the same amount
of rewardsPerBlock and an endTime which is exactly 1 block
extended. Now the function calls _transferFromWithAllowance
which attempts to transfer 500 tokens from the RewardManager
in, however it does not work because no approval is granted.
Now an external call to the malicious RewardManager is being
executed in order to grant the approval: 
 
rewardManager.call(abi.encodeWithSignature("resetAllow
ance(uint256)", _campaignID));

Page of 22 73 FarmingRange Paladin Blockchain Security

8. During the resetAllowance call, the RewardManager executes a
call to the owner contract which then executes another
updateRewardInfo which uses the same end time as the initial
value but rewardPerBlock is zero. Due to these parameters, the
FarmingRange contract will now refund all distributed tokens
back to the RewardManager contract because the
rewardPerToken is now zero.

9. After the successful transfer out, it sets the endBlock to the
same endBlock as before and the rewardPerToken to zero,
effectively mitigating any potential reward distribution.

10. However, the call is not finished, it now continues with the
resetAllowance function and approves the StakingToken to the
RewardManager because the first call attempted to receive 500
staking tokens in order to meet the desired extension of 1 block.

11. After the tokens have been successfully transferred in:  
_rewardToken.safeTransferFrom(rewardManager,
address(this), _amount); 
 
the new endBlock and rewardPerBlock is now set: 
selectedRewardInfo.endBlock =
_endBlock;selectedRewardInfo.rewardPerBlock =
_rewardPerBlock; 
 
The previous settings have now been effectively overriden.

12. The admin now withdraws 500_000 LP tokens while still having
the rewardsPerBlock set for his dummy pool, and they can
simply drain Charles’ staked LP tokens over the following 100
blocks.

Recommendation Consider making the RewardManager immutable and removing the
upgradePrecision function.

Resolution RESOLVED

Page of 23 73 FarmingRange Paladin Blockchain Security

Issue #05 First depositor can steal reward tokens

Severity

Description Campaigns are not updated if there are no staked tokens:

if (campaign.totalStaked == 0) {

// if there is no total supply, return and use the campaign's

start block as the last reward block

// so that ALL reward will be distributed.

// however, if the first deposit is out of reward period,

last reward block will be its block number

// in order to keep the multiplier = 0

 if (block.number > _endBlockOf(_campaignID,

block.number)) {  

 campaign.lastRewardBlock = block.number;

 }

 return;

}

While the natspec indicates that the intention is to distribute all
rewards, there will be a severe issue in the following PoC:

1. The owner adds a new campaign which has ID 3 and the
startBlock=17062006 — the lastRewardBlock for this
campaign is 17062006.

2. The owner now adds multiple reward rounds — the first round
starts from block 17062006 and runs until block 17064006 with
100e18 tokens per block.

3. Several blocks has passed and nobody has deposited since
then, let's say 200 blocks.

4. Charles deposits 1 nominal token, and during this deposit,
campaign.TotalStaked value is zero. Due to that, Charles’
rewardDebt will be set as follows:  
 
(user.amount * campaign.accRewardPerShare) / (1e20); 
 
Which is effectively zero because pools were not updated.

HIGH SEVERITY

Page of 24 73 FarmingRange Paladin Blockchain Security

5. Charles now withdraws his 1 nominal token but now, pools are
updated because campaign.TotalStaked is 1.

6. accRewardPerShare is now exactly 100e18 * 200, which means
that Charles will receive 20_000e18 tokens.

This issue occurs every time where no tokens are staked for this
pool. Charles now received 20_000e18 tokens retroactively for
staking 1 nominal token for 1 block.

Recommendation Consider always updating the pools when any deposit or withdrawal
happens in order to prevent such attacks unless this behavior is
desired.

Resolution

However, a bug was introduced which is described under Issue #11.

RESOLVED

Issue #06 Contract does not support tokens with a fee on transfer

Severity

Description The contract contains multiple spots which are not designed for
tokens with a fee on transfer.

Recommendation Consider not using such tokens, and if still desired, consider fixing
every spot where tokens are being transferred in and adjust the
accounting logic accordingly.

Resolution

HIGH SEVERITY

ACKNOWLEDGED

Page of 25 73 FarmingRange Paladin Blockchain Security

Issue #07 Owner can steal all rewards

Severity

Description Within updateRewardInfo and removeLastRewardInfo, the owner
can decrease or remove a reward round which then transfers the
excess reward amount back to the RewardManager contract.
However, the owner can at any time change the RewardManager
contract via setRewardManager, which allows the owner to steal
these tokens.

Recommendation Consider removing this function. If the team wishes to keep it,
consider setting the owner under a strict and reputable multi-
signature set-up. It might also make sense to implement a timelock
mechanism and a push-pull pattern for changing the
RewardManager contract.

Resolution

RewardManager is immutable.

RESOLVED

MEDIUM SEVERITY

Issue #08 Adding too many reward epochs can result in a DoS

Severity

Description The contract previously had a limit on the number of reward
epochs. This limit has been removed in the latest fix and thus can be
used to DoS the pair by adding too many epochs.

Recommendation Consider adding a limit that prevents any DoS. We recommend
setting it to around 50.

Resolution

MEDIUM SEVERITY

The cap is configurable and set by default to 52. The admin can still
DoS if the cap is set too high. Consider doing various fork-tests
before changing this variable.

PARTIALLY RESOLVED

Page of 26 73 FarmingRange Paladin Blockchain Security

Issue #09 Consecutive calls of upgradePrecision can result in a DoS

Severity

Description upgradePrecision increases the accRewardPerShare by 1e18.
While this function itself should never be present in a contract since
it allows tokens to be drained, there is another flaw which can occur
due to it: all arithmetic operations that use the accRewardPerShare
variable are then at risk of overflows which essentially breaks the
whole contract logic irreversibly.

Recommendation Consider removing this function, and if under all circumstances the
team still wishes to keep it, consider implementing a time-
restriction, i.e., allow this function only be callable once every 3
days.

Resolution

MEDIUM SEVERITY

The function has been removed.

RESOLVED

Issue #10 setRewardInfoLimit can cause DoS

Severity

Description rewardInfoLimit is set to 52 during contract deployment.
However, the owner can freely set it via the setRewardInfoLimit
function which can ultimately lead to a DoS state within the
updateCampaign function when too many reward rounds are being
added.

Recommendation Consider determining a reasonable upper value for
rewardInfoLimit within the setRewardInfoLimit function.

Resolution

MEDIUM SEVERITY

The function has been removed.

RESOLVED

Page of 27 73 FarmingRange Paladin Blockchain Security

Issue #11 Rewards can get stuck in the contract

Severity

Description If a round is added and rewards have been allocated, these will be
distributed amongst all stakers - however, if there is no staker for
this round the rewards will simply remain forever in the contract.

Recommendation Consider if that will become an issue, if yes consider transferring
them out for this special case.

Resolution

MEDIUM SEVERITY

RESOLVED

Page of 28 73 FarmingRange Paladin Blockchain Security

Issue #12 Reentrancy call allows owner to add false rewardInfo

Severity

Description addReward allows the owner of the contract to add reward rounds to
a campaign. With the usual business logic, one round can only be
followed by another subsequent round which means that each
round has its own block range and this will never interfere with the
previous or following round.

However, _transferFromWithAllowance opens the opportunity for
a potential reentrancy call if the RewardManager is set to another
contract where the resetAllowance function executes arbitrary
logic.

This can for example be used to add another round with the same
_endBlock as the previous round or other misbehaviors like a
subsequent round having a lower _endBlock than the previous
round. This would then result clearly in an unexpected behavior
with potential other-side effects.

Recommendation In order to mitigate any potential undesirable side-effects that can
be set by a malicious owner, we recommend adding a nonReentrant
modifier to the addRewardInfo function. This issue potentially also
applies to the updateRewardInfo function where we recommend
the same.

Resolution RESOLVED

LOW SEVERITY

Page of 29 73 FarmingRange Paladin Blockchain Security

Issue #13 totalRewards is not decreased for next round’s refund

Severity

Description totalRewards is decreased as follows:

campaign.totalRewards = _refund ? campaign.totalRewards -

_diff : campaign.totalRewards + _diff;

However, the potential decrease is missing:

campaign.rewardToken.safeTransfer(rewardManager,

_initialNextTotal - _nextTotal);

Recommendation Consider decreasing it for the latter case as well.

Resolution RESOLVED

LOW SEVERITY

Issue #14 Lack of validation

Severity

Location Line 53 

rewardManager = _rewardManager;

Description There should be a check that rewardManager cannot be address(0)
as it would break important functionality.

Recommendation Consider validating the variable appropriately.

Resolution

LOW SEVERITY

RESOLVED

Page of 30 73 FarmingRange Paladin Blockchain Security

Issue #15 Lack of safeTransfer usage

Severity

Description The contract uses safeTransfer everywhere except in the first
attempt to transfer tokens in from the RewardManager:

try _rewardToken.transferFrom(rewardManager, address(this),

_amount) {}

This will not work for tokens that return false on transfer or tokens
that do not have a return value, i.e. USDT on mainnet.

Recommendation Consider using safeTransferFrom.

Resolution

LOW SEVERITY

RESOLVED

Issue #16 startBlock can be set to a value in the past

Severity

Description addCampaignInfo does not check whether startBlock is in the
future. If the startBlock is accidentally set to a time in the past,
this will then accumulate rewards retroactively.

Recommendation Consider validating that startBlock is in the future.

Resolution

LOW SEVERITY

RESOLVED

Page of 31 73 FarmingRange Paladin Blockchain Security

Issue #17 Unlisted campaigns can be updated

Severity

Description It is possible to call updateCampaign with a campaignID that has not
been added yet. This will set the lastRewardBlock of this campaign
to the current block.

While this does not expose any risk because the addition of this
campaign will reset lastRewardBlock anyway, it might still make
sense to prevent users from calling this.

Recommendation Consider validating that updateCampaign can only be called with
valid campaignIDs.

Resolution RESOLVED

INFORMATIONAL

Issue #18 The CEI pattern is not adhered to

Severity

Description The contract contains multiple spots where the CEI pattern is not
adhered to (https://fravoll.github.io/solidity-patterns/
checks_effects_interactions.html).

As most potential issues have already been mentioned within this
report (ie. theft of staking tokens), this issue will has been marked
as informational.

Recommendation Consider adhering to the CEI pattern wherever possible in the
contract.

Resolution

INFORMATIONAL

RESOLVED

Page of 32 73 FarmingRange Paladin Blockchain Security

https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html

Issue #19 Gas optimizations

Severity

Description L216

block.number > _lastRewardInfoEndBlock ? block.number :

_lastRewardInfoEndBlock,

The check of block.number > _lastRewardInfoEndBlock is
redundant as the require on Line 211 makes the function accept the
last reward info to be removed only if _lastRewardInfoEndBlock >
block.number.

L157 - 158

nextRewardInfo.rewardPerBlock =

(nextRewardInfo.rewardPerBlock * _initialBlockRange) /

_nextBlockRange;

uint256 _nextTotal = _nextBlockRange *

nextRewardInfo.rewardPerBlock;

nextRewardInfo.rewardPerBlock should be cached to save some
gas.

——

for (uint256 _i = 0; _i < _len; ++_i) {

Assigning a variable with default value at declaration consumes gas
(uint256 _i = 0).

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution RESOLVED

INFORMATIONAL

Page of 33 73 FarmingRange Paladin Blockchain Security

Issue #20 Lack of events for upgradePrecision

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications.

Recommendation Add events for the function.

Resolution

The function has been removed.

RESOLVED

INFORMATIONAL

Page of 34 73 FarmingRange Paladin Blockchain Security

2.3	 	Rewards/Staking

Staking is a yield-bearing staking contract which receives its rewards via three
methods:

1. Incentives from campaignId 0 within the FarmingRewards contract

2. Fees from the liquidity pairs

3. Admin injections

Users can simply deposit SmarDex tokens and receive a staking receipt which
represents the underlying position. Unlike most other vaults, this receipt is not
transferable by the user and can only be redeemed by the actual initiator of the
corresponding position.

During each deposit and withdraw, the contract will automatically harvest rewards
from the FarmingRewards contract which will then be distributed amongst all pool
participants.

Page of 35 73 Staking Paladin Blockchain Security

2.3.1	 Issues & Recommendations

Issue #21 The first depositor can steal the shares of subsequent depositors

Severity

Description The first depositor can steal the shares of all subsequent
depositors. Consider the following PoC:

1. Deposit 1 nominal token, receiving 1e18 shares.

2. Withdraw 999999999999999999 shares.

3. Transfer 1000e18 tokens to the staking contract

4. The subsequent depositors' shares will be rounded down to
zero.

Recommendation There are multiple methods for remediation:

1. Burn 1000 shares during the first deposit.

2. Revert in case shares become zero.

3. Follow the virtual shares principle from OZ (https://github.com/
OpenZeppelin/openzeppelin-contracts/blob/master/contracts/
token/ERC20/extensions/ERC4626.sol)

Resolution

1000 shares have been burned but there is still wiggle room if
enough tokens are transferred to the vault. We recommend
implementing a mechanism where shares round down to zero.
However, the most ideal scenario would be in fact following
OpenZeppelin’s new method.

PARTIALLY RESOLVED

HIGH SEVERITY

Page of 36 73 Staking Paladin Blockchain Security

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC4626.sol

Issue #22 Funds can be stuck in the contract forever

Severity

Description Each deposit and withdrawal executes a harvest, which is a
withdraw(0) on campaign[0] within the FarmingRange contract.

While this works without any issues, this function can revert if the
the FarmingRange owner sets rewardInfoLimit to a very high value
followed by adding several reward rounds which then results in
_updateCampaign[0] reverting.

The same issue can occur if the owner calls upgradePrecision
often to artificially provoke an overflow.

Recommendation Consider implementing logic which allows users to emergency
withdraw their funds without harvesting in case of emergency. It is
important to not do the same for deposit because that could be
exploited in order to steal yield.

Resolution

HIGH SEVERITY

RESOLVED

Issue #23 Admin injections can be frontran

Severity

Description The natspec documents the following: 
Pool will receive SDEX rewards fees by external transfer from admin 
 
This special behavior can be abused by a frontrunner in order to
steal yield.

Recommendation While there is no code-specific recommendation for this, we would
recommend to do these injections in very small steps in order to
mitigate the potential damage by frontrunners.

Resolution ACKNOWLEDGED

MEDIUM SEVERITY

Page of 37 73 Staking Paladin Blockchain Security

Issue #24 Lack of validation

Severity

Description During the contract creation, both variables _smardexToken and
farming are set. However, there is no check that these addresses
are not address(0).

Recommendation Consider implementing an address(0) check for both variables.

Resolution RESOLVED

LOW SEVERITY

Issue #25 Contract does not adhere to the CEI pattern

Severity

Description Within the deposit function, the token transfer is being executed
before the accounting logic. While at this point there is no
possibility of abuse, it is still considered as best-practice to adhere
to the CEI pattern. (https://fravoll.github.io/solidity-patterns/
checks_effects_interactions.html)

Recommendation Consider executing the transfer after all effects have been applied.

Resolution

INFORMATIONAL

RESOLVED

Page of 38 73 Staking Paladin Blockchain Security

https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html

Issue #26 _sharesToTokens is slightly flawed

Severity

Description _sharesToTokens checks for the condition that totalShares > 0
and then returns based on that value. However, due to the business
logic, it does not make any sense to check for this condition
because it is not possible to convert any shares to tokens if there
are no shares in existence.

Recommendation Consider simply removing this check.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 39 73 Staking Paladin Blockchain Security

2.4	 	Rewards/AutoSwapper

AutoSwapper is a simple swapper contract which regularly receives funds during
each mint and burn call from all pairs. A pair simply sends all accumulated fees
directly to the swapper contract and then calls executeWork which swaps one or
both tokens to the Smardex token and transfers it directly to the Staking contract
where it is then distributed amongst all vault participants.

Page of 40 73 AutoSwapper Paladin Blockchain Security

2.4.1	 Issues & Recommendations

Issue #27 The slippage calculation is flawed

Severity

Description The slippage calculation is done as follows:

uint256 _amountOutWithSlippage = (_params.balanceIn *

_params.newPriceAvOut * (AUTOSWAP_SLIPPAGE_BASE -

AUTOSWAP_SLIPPAGE)) / (_params.newPriceAvIn *

AUTOSWAP_SLIPPAGE_BASE);

However, this calculation assumes that the constant k formula is
always applied on the price averages. While this is correct for the
first swap, it will not work for consecutive swaps. Below is an
example:

1. The fictive reserves are Xfr = 500e18; Yfr = 500e18

2. Charles swaps 50e18 tokenX to tokenY

3. priceAverage was not set before, therefore it becomes Xpa =
500e18; Ypa = 500e18

4. The swap is executes based on the constant k formula which
changes fictiveReserves to Xfr = 550e18; Yfr = 455e18

5. 150 seconds passes and Charles adds liquidity which
proportionally increases the fictiveReserves. In order to keep
this example simple, we will use the value of 10% 
-> Xfr = 605e18; Yfr = 500.5e18

6. Now the executeWork function is triggered

7. The current priceAverage is being calculated based on the
aforementioned priceAverage and the current fictive reserves
which leads to: Xpa = 605e18, Ypa = 552e18

8. These priceAverages lead to a minimum required output of
44.7e18

9. However, during the swap, the constant k formula is applied on
the fictiveReserves which was Xfr = 605e18; Yfr =
500.5e18, which leads to an output of 41.3e18 (ignoring the
slippage)

MEDIUM SEVERITY

Page of 41 73 AutoSwapper Paladin Blockchain Security

This PoC clearly outlines the issue behind this calculation: the PA
did not reach the FR ratio yet which results in a higher output when
the calculation is done with the PA.

Recommendation Consider executing the calculation based on the fictive reserves,
however, one must potentially compute them beforehand if the PA
ratio is near the FR ratio.

Resolution ACKNOWLEDGED

Issue #28 Lack of validation

Severity

Description factory, smardexToken and stakingAddress are set during the
contract deployment. However, there is no safeguard which ensures
that these addresses cannot be set to address(0).

Recommendation Consider implementing an appropriate validation.

Resolution

LOW SEVERITY

RESOLVED

Page of 42 73 AutoSwapper Paladin Blockchain Security

Issue #29 Arbitrage opportunities in increased trading periods

Severity

Description When a swap is executed, the fees are accumulated within the pair.
Once a mint or burn of liquidity is called, the fees are transferred to
the feeTo parameter from the factory which we assume is the
AutoSwapper contract. This contract has a method that is publicly
available which converts the fees into SmardexToken and sends it to
the staking contract.

An MEV searcher can take advantage of this opportunity by
bundling the flow of:

1. Looking for a pair that has accumulated a significant amount of
fees

2. Mint a small amount to trigger _mintFee from the pair which
sends the tokens to AutoSwapper

3. Deposit a significant amount of tokens into the staking contract

4. Call executeWork on the AutoSwapper

5. Withdraw from the Staking contract

The bundle can yield a good amount of reward for the MEV
searcher.

Recommendation Consider monitoring the fee amounts of the pairs and call
executeWork frequently, and consider adding a method that lets
feeToSetter transfer the fees from a pair to AutoSwapper,
otherwise it is necessary to mint/burn small amounts of liquidity to
trigger the transfer.

An alternative solution would be to just set feeTo to an EOA which
can then be automatically called once a day to convert them
manually and deposit into the staking contract.

Resolution

LOW SEVERITY

ACKNOWLEDGED

Page of 43 73 AutoSwapper Paladin Blockchain Security

Issue #30 Lack of events for executeWork

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications.

Recommendation Add events for the function.

Resolution RESOLVED

INFORMATIONAL

Page of 44 73 AutoSwapper Paladin Blockchain Security

2.5	 	Periphery/SmardexRouter

SmardexRouter allows users to add liquidity, swap tokens and remove liquidity.
Unlike UniswapV2Router, it follows the mechanism of UniswapV3 where tokens to
be added as liquidity or to be swapped are transferred from the user only via a
callback function to the pair.

Users can swap tokens via an exact input amount or via an exact output amount —
the internal functions in the libraries getAmountIn and getAmountOut will then
calculate the corresponding amounts.

Page of 45 73 SmardexRouter Paladin Blockchain Security

2.5.1	 Issues & Recommendations

Issue #31 Ether is refunded to the _to address

Severity

Description swapETHForExactTokens allows a user to swap Ether to any
arbitrary token while the _to address is intended to receive the
output amount.

However, due to the nature of this function the input amount will
most probably not be exact which means that the user might receive
a leftover amount back, which is transferred to the _to address.

Recommendation Consider refunding Ether to msg.sender.

Resolution

MEDIUM SEVERITY

RESOLVED

Page of 46 73 SmardexRouter Paladin Blockchain Security

Issue #32 Router does not support tokens with a fee on transfer

Severity

Description In the case of swapping tokens to exact tokens, the pair calculates
how many tokens are necessary to receive the exact output amount
and then requests during a callback to transfer this amount from
the initiator to the pair. Afterwards, the pair checks that the
received amount is in fact sufficient. However, for tokens that have a
fee on transfer, the balance will not be be sufficient, effectively
reverting the transaction.

In the case of swapping exact tokens to tokens, the pair calculates
the output amount based on the input amount and then during the
callback requests the input amount to be transferred from the
initiator to the pair. However, similar to the above scenario, the pair
will receive less tokens than expected, effectively reverting the
whole transaction.

Recommendation Consider implementing logic that accounts for the case of the
swapping tokens with a fee on transfer.

Resolution

MEDIUM SEVERITY

ACKNOWLEDGED

Page of 47 73 SmardexRouter Paladin Blockchain Security

Issue #33 getAmountIn and getAmountOut might lead to wrong values

Severity

Description getAmountIn and getAmountOut call the corresponding functions
within SmardexLibrary. However, care should be taken when doing
this as users could accidentally use outdated values from the pair as
input parameters. In fact, priceAverage should be always updated
before calling any of these functions.

This issue is declared as medium since it can result in DoS for
external contracts that rely on the correct return amount.

Recommendation Consider always fetching the updated price-average for these
functions — this is especially important if these functions are used
by third parties as it may lead to DoS. 
 
Fortunately, the Pair already has a getter function for the updated
price average: getUpdatedPriceAverage. This function could be
used to fetch the return values and then use the return values for
getAmountOut and getAmountIn.

Resolution RESOLVED

MEDIUM SEVERITY

Issue #34 Funds can be stuck in the router

Severity

Description _swapExactOut has the following check:

if (_to == address(0)) {

_to = address(this); }

However, for that case, the funds would simply be stuck in the
router without any possibility of retrieval. The same applies to
_swapExactOutIn.

Recommendation Consider explicitly reverting for _to = address(0).

Resolution

LOW SEVERITY

RESOLVED

Page of 48 73 SmardexRouter Paladin Blockchain Security

Issue #35 Unprivileged ETH can be stolen

Severity

Description The contract disabled the ability to receive Ether from any sources
other than the WETH address. However, Ether can be still sent via
various methods including a self-destruct transaction.

If the contract ever receives any Ether, a malicious user can simply
drain it by calling swapExactTokensForETH with a very small or null-
ish token amount. The desired Ether amount will be calculated and
transferred from the pair to the router.

Afterwards, _unwrapETH is called which transfers the whole contract
balance to the user, effectively taking all Ether in the contract while
the user should only receive a very small amount.

Recommendation This issue is only informational due the low likelihood of it
happening. At this point, we do not recommend any change to the
contract, however, this case should be kept in mind.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 49 73 SmardexRouter Paladin Blockchain Security

2.6	 	Periphery/BytesLib

The BytesLib library is used within the Path library and is responsible for slicing
and type casting bytes arrays.

This contract was forked from https://github.com/GNSPS/solidity-bytes-utils/blob/
master/contracts/BytesLib.sol.

Page of 50 73 BytesLib Paladin Blockchain Security

https://github.com/GNSPS/solidity-bytes-utils/blob/master/contracts/BytesLib.sol
https://github.com/GNSPS/solidity-bytes-utils/blob/master/contracts/BytesLib.sol

2.6.1	 Issues & Recommendations

Issue #36 toUint24 is unused

Severity

Description While all other functions within this library are used, we could not
determine a use case for this function.

The uint24 returned may have some ghost bits that could lead to
errors when using this value in an assembly block.

Recommendation Consider removing the toUint24 function.

Resolution RESOLVED

INFORMATIONAL

Page of 51 73 BytesLib Paladin Blockchain Security

2.7	 	Periphery/Path

The Path library is used for manipulating path data, i.e., reversing paths, getting the
first pool from a path or skipping one token from a path.

This contract was forked from https://github.com/Uniswap/v3-periphery/blob/
main/contracts/libraries/Path.sol.

Page of 52 73 Path Paladin Blockchain Security

https://github.com/Uniswap/v3-periphery/blob/main/contracts/libraries/Path.sol
https://github.com/Uniswap/v3-periphery/blob/main/contracts/libraries/Path.sol
https://github.com/Uniswap/v3-periphery/blob/main/contracts/libraries/Path.sol

2.7.1	 Issues & Recommendations

Issue #37 Gas optimization

Severity

Description encodeTightlyPacked and encodeTightlyPackedReversed use
dynamic length arrays as parameters which are declared as memory.
Declaring them as calldata instead would save some gas.

Recommendation Consider declaring the above variables as calldata.

Resolution

INFORMATIONAL

RESOLVED

Issue #38 Typographical error

Severity

Location Line 36 

// Ignore the first token address. From then on every fee and

token offset indicates a pool.

Description This comment is outdated.

Recommendation Consider fixing the typographical error.

Resolution

INFORMATIONAL

RESOLVED

Page of 53 73 Path Paladin Blockchain Security

2.8	 	Periphery/PoolAddress

PoolAddress is a simple helper contract that computes a pair address based on the
init code hash
=b477a06204165d50e6d795c7c216306290eff5d6015f8b65bb46002a8775b548,
the factory and both tokens (sorted). It also has a function to retrieve the pair
address directly from the factory (if it already exists).

2.8.1	 Issues & Recommendations

No issues found.

Page of 54 73 PoolAddress Paladin Blockchain Security

2.9	 	Periphery/PoolHelpers

PoolHelpers is a simple helper contract which is responsible for fetching different
values like priceAverage or fictiveReserves from the pair.

2.9.1	 Issues & Recommendations

No issues found. 

Page of 55 73 PoolHelpers Paladin Blockchain Security

2.10	 	Core/SmardexPair

SmardexPair is the standard pair contract that is deployed by SmardexFactory.
Usually, it is called by the user via the router to swap tokens, add liquidity and
remove liquidity. The logic behind the swaps and the swap fee is handled within the
SmardexLibrary.

Users can swap tokens by providing the desired output amount via
amountSpecified as a positive value or providing the desired input amount via
amountSpe amountSpecified cified as a negative value. The swap logic will then
calculate the corresponding input/output amount automatically based on the sign
of the value.

The swap logic is described under the SmardexLibrary section.

Page of 56 73 SmardexPair Paladin Blockchain Security

2.10.1	 Issues & Recommendations

Issue #39 The protection for _feeToSwap does not suffice

Severity

Location Line 512-520 

 _feeTo.call(abi.encodeWithSelector(AUTOSWAP_SELECTOR,

token0, token1));

// After the _feeTo call, we check if gas is not equal to 0.

Though seemingly redundant

// (as running out of gas would fail the transaction anyway),

this require prevents the

// compiler from ignoring a simple gasleft() expression,

which it may perceive as

// useless if not used elsewhere. The aim here is to consume

some gas to ensure the

// transaction isn't out of gas at this point. This acts as a

safeguard against potential

// exploitation where a low gasLimit prevents the _feeTo call

from fully executing.

require(gasleft() != 0, "");

Description _feeToSwap has a check at the end of the function to make sure that
the right amount of gas was sent in the _feeTo.call.

However, the check is not sufficient as the 1/64 rule states that 1
out of the 64th of the gas sent within this function still remains in
the parent function, rendering that call to always be true and the
attack still possible.

Recommendation Consider implementing a correct check so that enough gas is left.
An example can be seen in the following article: https://
medium.com/@wighawag/ethereum-the-concept-of-gas-and-its-
dangers-28d0eb809bb2

Resolution

MEDIUM SEVERITY

ACKNOWLEDGED

Page of 57 73 SmardexPair Paladin Blockchain Security

https://medium.com/@wighawag/ethereum-the-concept-of-gas-and-its-dangers-28d0eb809bb2

Issue #40 _feeToSwap can be subjected to sandwich attacks

Severity

Description Each mint and burn transaction transfers the fee and the feeTo to
the AutoSwapper contract respectively. At the end of each
transaction, the internal _feeToSwap function is called which calls
executeWork within the AutoSwapper contract.

If a large number of swaps are being executed within a period where
no liquidity is added or burned, a malicious user can benefit from
the following scenario:

1. Experience a lot of fee accumulation

2. Buy SmardexToken

3. Deposit SmardexToken in the Staking contract

4. Add liquidity in order to trigger _feeToSwap

5. SmardexToken now gains value due to the swap and the
deposited amount within the Staking contract accumulates
tokens due to the transfer of the SmardexToken to the deposit
contract

6. Withdraw from the Staking contract and sell the SmardexToken

Due to the low likelihood of periods where no liquidity is added /
burned we will classify this issue only as low severity.

Recommendation Consider if this becomes an issue in practice, and if so, consider
implementing an external function which clears the fees and calls
executeWork in the AutoSwapper contract. Consider implementing
a call via a third party that is regularly executed every few hours.

Resolution

LOW SEVERITY

A bot will regularly call the _feeToSwap function to prevent the
accumulation of too much fees.

ACKNOWLEDGED

Page of 58 73 SmardexPair Paladin Blockchain Security

Issue #41 _feeToSwap can be subjected to gas griefing

Severity

Description _feeToSwap does an external call to the feeTo address from the
factory contract.

L488

_feeTo.call(abi.encodeWithSelector(AUTOSWAP_SELECTOR,

token0, token1));

The return value of the call is unchecked, meaning that even if it
fails, the call will continue to execute.

An attacker can make the external call silently fail by forwarding the
exact gas when calling mint so that the execution of the mint
function executes but there is not enough gas to handle the external
call. This is possible with EIP-150 and its gas rule where it forwards
63 out of 64 gas left for execution. Therefore that 1/64 gas left
finshes executing the function before the external call happens.

As mentioned previously, the attacker can make the external call fail
by sending the specific amount of gas needed for the execution of
the first call, not using the function correctly. It is a low severity
issue because even if the attacker can brick the execution of the
external call, the fees are deducted beforehand and the next
liquidity event will simply trigger the function

Recommendation Due to the current design, it is definitely worse to explicitly check
the return value of the function call because this might expose a
way for DoS within the pair, which can result in the funds stuck
within the pair.

We recommend simply acknowledging this issue and keep it in
mind.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 59 73 SmardexPair Paladin Blockchain Security

Issue #42 Gas optimization

Severity

Location L261

require(_to != _params.token0 && _to != _params.token1,

"SmarDex: INVALID_TO");

Description This check should be moved to line 182 to save some gas if this
requirement was making the transaction to revert.

Recommendation Consider implementing the gas optimization mentioned above.

Resolution

INFORMATIONAL

RESOLVED

Issue #43 Typographical issue

Severity

Location L355

function _mintFee() private returns (bool feeOn_)

Description The name of the function is ambiguous as it is in fact just
transferring the fee amount to _feeTo. Consider renaming it to
_transferFee or _sendFee.

Recommendation Consider fixing the typographical issue.

Resolution

INFORMATIONAL

RESOLVED

Page of 60 73 SmardexPair Paladin Blockchain Security

2.11	 	Core/SmardexFactory

SmardexFactory is a slightly modified fork of UniswapV2Factory. Users can create
deterministic pairs and the feeToSetter address can determine the feeTo address.

2.11.1	 Privileged Functions

- setFeeTo

Page of 61 73 SmardexFactory Paladin Blockchain Security

2.11.2	 Issues & Recommendations

Issue #44 Missing safeguards on setFeeToSetter

Severity

Description The function is missing safeguards for the new value to not be
address(0) as setFeeTo cannot be called anymore if
setFeeToSetter is set to address(0).

Recommendation Consider adding checks for address(0).

Resolution

LOW SEVERITY

feeToSetter has been removed, now feeTo can be set by the
owner.

RESOLVED

Issue #45 Owner can redirect all fees to their own address

Severity

Description The fees are either completely disabled or redirected to the Staking
address as SmardexToken. However, the owner can simply set the
feeTo address to any other address than the AutoSwapper contract
which results in the owner receiving all fees.

Recommendation Consider setting the feeToSetter address to a multi-signature
contract.

Resolution

INFORMATIONAL

The owner is already a multi-signature contract, and will become a
DAO. This is done on purpose to let the DAO decide on eventual
future updates regarding AutoSwapper, Stake or fees Strategies.

ACKNOWLEDGED

Page of 62 73 SmardexFactory Paladin Blockchain Security

Issue #46 Lack of events for setFeeTo and setFeeToSetter

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications.

Recommendation Add events for the above functions.

Resolution

INFORMATIONAL

RESOLVED

Page of 63 73 SmardexFactory Paladin Blockchain Security

2.12	 	Core/SmardexLibrary

SmardexLibrary is a library that is used to calculate amounts during a swap or a
liquidity event. The library allows to calculate the fictive and real reserves of the
pair during a deposit, withdrawal and a swap.

The calculation of the fictive reserves is a crucial point of SmarDex as it is what
provides the Impermanent Loss mitigation and in certain cases, can even provide
Impermanent Gain.

The idea behind SmarDex is that a trade that drives the price closer to the average
price should have less liquidity while a trade that drives the price away from the
average price should have more liquidity. Essentially, the price impact of a swap is
lower when swapping away from the average price. This aligns with the desire of
“selling high, buying low”.

When a swap exceeds the price average, for example if the price was lower or
higher than the average price, and that the swap increases or decreases the price
but crosses the average price, the swap will be calculated in two steps:

- First, the share of the swap that gets closer to the priceAverage will be done
with the current fictive reserves in order to reach the priceAverage.

- Second, the fictive reserves will now be recomputed and the last share of the
swap, that drives the price away from the average price will be done with
recomputed fictive reserves.

All swaps use the constant product formula, but with fictive reserves that may be
different from the real reserves of the pair, and that may be different from the
different steps of the swap.

Page of 64 73 SmardexLibrary Paladin Blockchain Security

The library also takes care of the fee calculation — FEES_LP is the fees that the
liquidity provider will receive and they are set to 0.05%, while FEES_POOL is the fees
for the protocol and they are set to 0.02%. The swap fees are thus set to 0.07%.

The average price logic was introduced to prevent the pair from being exploited by
a malicious user that could use the liquidity flow to steal funds from the pool. The
average price is a weighted average of the last average price and the current price,
weighted by the time. If the last swap was done during the same block, the price is
not updated, if it has been more than 300 seconds, the average price is set to the
current price, and if it is between 0 and 300 seconds, it returns the weighted
average price.

Page of 65 73 SmardexLibrary Paladin Blockchain Security

2.12.1	 Issues & Recommendations

Issue #47 Swap logic limits swaps

Severity

Description The swap prices are based on fictiveReserves, which means that
the slippage will be higher than with a standard UniswapV2 swap
due to fictiveReserves being significantly lower than the real
reserves.

Moreover, applyKConstRuleOut calculates the new fictive reserves
as follows:

newFictiveReserveOut_ = _fictiveReserveOut - amountOut_

This means even if a user decides to accept a huge slippage, it
would not work because the fictive reserves would underflow.

Recommendation A fix for this issue is non-trivial as it would require changing the
whole swap logic.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 66 73 SmardexLibrary Paladin Blockchain Security

2.13	 	Core/TransferHelper

TransferHelper is a simple helper contract which is responsible for safely calling
approve, transfer, transferFrom and transferring the native token.

2.13.1	 Issues & Recommendations

No issues found. 

Page of 67 73 SmardexLibrary Paladin Blockchain Security

2.14	 	Core/SmardexToken

SmardexToken is a simple ERC20 token with Permit functionality — it follows the
OpenZeppelin standard which is a well-known standard in the industry.

2.14.1	 Issues & Recommendations

Issue #48 Outdated ERC20 Permit implementation

Severity

Description The contract currently implements an outdated ERC20 Permit
implementation from OpenZeppelin. Upgrading to the latest version
would get the ERC20 permit from Draft status to production.

Recommendation Consider upgrading the OpenZeppelin libraries to the latest version.

Resolution RESOLVED

LOW SEVERITY

Page of 68 73 SmardexToken Paladin Blockchain Security

2.15	 	AutoSwapperL2

AutoSwapperL2 is a stripped version of AutoSwapper that will be deployed on
mainnet. The L2 version sends SDEX to a dead address instead of a staking contract
as the L2 version will not support the staking of SDEX.

2.15.1	 Issues & Recommendations

No issues found.

Page of 69 73 AutoSwapperL2 Paladin Blockchain Security

2.16	 	FarmingRangeL2Arbitrum

FarmingRangeL2Arbitrum is a copy of the FarmingRange contract that modifies the
way the block.number is retrieved to adapt to the Arbitrum network.

2.16.1	 Privileged Functions

- transferOwnership

- renounceOwnership

- upgradePrecision

- setRewardManager

- setRewardInfoLimit

- addCampaignInfo

- addRewardInfo

- addRewardInfoMultiple

- updateRewardInfo

- updateRewardMultiple

- updateCampaignsReward

- removeLastRewardInfo

2.16.2	 Issues & Recommendations

No issues found. 

Page of 70 73 FarmingRangeL2Arbitrum Paladin Blockchain Security

2.17	 	RewardManagerL2

RewardManagerL2 is a stripped version of RewardManager, specially designed to be
deployed on a L2 network. This contract does not deploy a staking contract and
does not set a campaign with id 0 (the campaign designed for the staking contract in
the normal RewardManager) as there is no staking contract present on L2.

2.17.1	 Issues & Recommendations

Issue #49 The Staking contract should not be deployed to L2 chains

Severity

Description As the staking contract expects pool id 0 to be the staking reward, if
the Staking contract is ever deployed with L2 contracts, this
assumption will be false and the Staking contract will malfunction.

Recommendation Consider carefully never deploying the Staking contract with the L2
contracts.

Resolution

LOW SEVERITY

ACKNOWLEDGED

Page of 71 73 RewardManagerL2 Paladin Blockchain Security

2.18	 	RewardManagerL2Arbitrum

RewardManagerL2Arbitrum is a stripped version of RewardManager, specially
designed to be deployed on the Arbitrum network. This contract does not deploy a
staking contract and does not set a campaign with id 0 (the campaign designed for
the staking contract in the normal RewardManager) as there is no staking contract
present on Arbitrum.

2.18.1	 Issues & Recommendations

Issue #50 The Staking contract should not be deployed to L2 chains

Severity

Description As the staking contract expects pool id 0 to be the staking reward, if
the Staking contract is ever deployed with L2 contracts, this
assumption will be false and the Staking contract will malfunction.

Recommendation Consider carefully never deploying the Staking contract with the L2
contracts.

Resolution

LOW SEVERITY

ACKNOWLEDGED

Page of 72 73 RewardManagerL2Arbitrum Paladin Blockchain Security

Page of 73 73 RewardManagerL2Arbitrum Paladin Blockchain Security

	Table of Contents
	Disclaimer
	1 Overview
	1.1 Summary
	1.2 Contracts Assessed
	1.3 Findings Summary
	1.3.1 RewardManager
	1.3.2 FarmingRange
	1.3.3 Staking
	1.3.4 AutoSwapper
	1.3.5 SmardexRouter
	1.3.6 BytesLib
	1.3.7 Path
	1.3.8 PoolAddress
	1.3.9 PoolHelpers
	1.3.10 SmardexPair
	1.3.11 SmardexFactory
	1.3.12 SmardexLibrary
	1.3.13 TransferHelper
	1.3.14 SmardexToken
	1.3.15 AutoSwapperL2
	1.3.16 FarmingRangeL2Arbitrum
	1.3.17 RewardManagerL2
	1.3.18 RewardManagerL2Arbitrum

	2 Findings
	2.1 Rewards/RewardManager
	2.1.1 Issues & Recommendations

	2.2 Rewards/FarmingRange
	2.2.1 Privileged Functions
	2.2.2 Issues & Recommendations

	2.3 Rewards/Staking
	2.3.1 Issues & Recommendations

	2.4 Rewards/AutoSwapper
	2.4.1 Issues & Recommendations

	2.5 Periphery/SmardexRouter
	2.5.1 Issues & Recommendations

	2.6 Periphery/BytesLib
	2.6.1 Issues & Recommendations

	2.7 Periphery/Path
	2.7.1 Issues & Recommendations

	2.8 Periphery/PoolAddress
	2.8.1 Issues & Recommendations

	2.9 Periphery/PoolHelpers
	2.9.1 Issues & Recommendations

	2.10 Core/SmardexPair
	2.10.1 Issues & Recommendations

	2.11 Core/SmardexFactory
	2.11.1 Privileged Functions
	2.11.2 Issues & Recommendations

	2.12 Core/SmardexLibrary
	2.12.1 Issues & Recommendations

	2.13 Core/TransferHelper
	2.13.1 Issues & Recommendations

	2.14 Core/SmardexToken
	2.14.1 Issues & Recommendations

	2.15 AutoSwapperL2
	2.15.1 Issues & Recommendations

	2.16 FarmingRangeL2Arbitrum
	2.16.1 Privileged Functions
	2.16.2 Issues & Recommendations

	2.17 RewardManagerL2
	2.17.1 Issues & Recommendations

	2.18 RewardManagerL2Arbitrum
	2.18.1 Issues & Recommendations

