
Page of 1 29 Paladin Blockchain Security

Smart Contract
Security Assessment

For SmarDex (Update)
23 November 2023

paladinsec.co info@paladinsec.co

Preliminary Report

Table of Contents 
 
Table of Contents	
2

Disclaimer	
4

1 Overview	
5

1.1 Summary	
5

1.2 Methodology	
6

1.3 Contracts Assessed	
7

1.4 Findings Summary	
8

1.4.1 SmardexFactory	
9

1.4.2 SmardexPair	
9

1.3.3 SmardexLibrary	
9

1.3.4 SmardexRouter	
9

1.3.5 Autoswapper	
9

1.3.6 FarmingRange	
10

1.3.7 RewardManagerWithdrawable	
10

1.3.8 PoolAddress	
10

1.3.9 PoolHelpers	
10

1.3.10 Staking	
10

2 Findings	
11

2.1 SmardexFactory	
11

2.1.1 Issues & Recommendations	
12

2.2 SmardexPair	
14

2.2.2 Issues & Recommendations	
14

2.3 SmardexLibrary	
15

2.3.1 Issues & Recommendations	
15

2.4 SmardexRouter	
16

2.4.1 Issues & Recommendations	
19

2.5 Autoswapper	
22

Page of 2 29 Paladin Blockchain Security

2.5.1 Issues & Recommendations	
23

2.6 FarmingRange	
24

2.6.1 Issues & Recommendations	
24

2.7 RewardManagerWithdrawable	
25

2.7.1 Issues & Recommendations	
25

2.8 PoolAddress	
26

2.8.1 Issues & Recommendations	
26

2.9 PoolHelpers	
27

2.9.1 Issues & Recommendations	
27

2.10 Staking	
28

2.10.1 Issues & Recommendations	 28

Page of 3 29 Paladin Blockchain Security

Disclaimer

Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity
of and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in
the codes that were provided for the scope of this audit. This audit report does not constitute
agreement, acceptance or advocation for the Project that was audited, and users relying on this
audit report should not consider this as having any merit for financial advice in any shape, form or
nature. The contracts audited do not account for any economic developments that may be pursued
by the Project in question, and that the veracity of the findings thus presented in this report relate
solely to the proficiency, competence, aptitude and discretion of our independent auditors, who
make no guarantees nor assurance that the contracts are completely free of exploits, bugs,
vulnerabilities or deprecation of technologies. Further, this audit report shall not be disclosed nor
transmitted to any persons or parties on any objective, goal or justification without due written
assent, acquiescence or approval by Paladin.

All information provided in this report does not constitute financial or investment advice, nor
should it be used to signal that any persons reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report. Information is
provided ‘as is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the
contracts audited. In no event will Paladin or its partners, employees, agents or parties related to
the provision of this audit report be liable to any parties for, or lack thereof, decisions and/or
actions with regards to the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to
cryptocurrencies are highly volatile and speculative by nature. All reasonable due diligence and
safeguards may yet be insufficient, and users should exercise considerable caution when
participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate
recommendations to the Project team with respect to the rectification, amendment and/or revision
of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the sole
responsibility of the Project team to sufficiently test and perform checks, ensuring that the
contracts are functioning as intended, specifically that the functions therein contained within said
contracts have the desired intended effects, functionalities and outcomes of the Project team.

Paladin retains the right to re-use any and all knowledge and expertise gained during the audit
process, including, but not limited to, vulnerabilities, bugs, or new attack vectors. Paladin is
therefore allowed and expected to use this knowledge in subsequent audits and to inform any third
party, who may or may not be our past or current clients, whose projects have similar
vulnerabilities. Paladin is furthermore allowed to claim bug bounties from third-parties while doing
so. 

Page of 4 29 Paladin Blockchain Security

1	 	 Overview

This report has been prepared for SmarDex’s updated contracts on the Ethereum
network. Paladin provides a user-centred examination of the smart contracts to
look for vulnerabilities, logic errors or other issues from both an internal and
external perspective.

This audit focuses on a diff-based evaluation of the SmarDex Protocol, and
specifically targets the updated smart contracts. Paladin will analyze the changes
introduced in the recent update, assessing any new vulnerabilities or security
implications arising from these modifications.

Please refer to Section 1.2 below to see a list of all contracts that were assessed in
the scope of this audit.

1.1	 	 Summary

Project Name Smardex.io

URL https://smardex.io/

Network Ethereum

Language Solidity

Preliminary https://github.com/petra-foundation/smardex-paladin-audit-2/tree/
ff6016bea6ebb197b12a8bdf0c1d91d7e0a59fab/contracts

Page of 5 29 Paladin Blockchain Security

https://smardex.io/
https://github.com/petra-foundation/smardex-paladin-audit-2/tree/ff6016bea6ebb197b12a8bdf0c1d91d7e0a59fab/contracts

1.2	 	 Methodology

The audit will treat the previously audited contracts as a black box. Our primary
focus will be on the differences between the old and updated versions, examining
how these changes interact with the existing codebase.

We will assess:

- the scurity vulnerabilities introduced by the updates,

- any logical inconsistencies or flaws resulting from the changes, and

- the impact of the modifications on the overall protocol architecture and
functionality.

This audit will conclude with a comprehensive report that outlines any identified
risks, potential vulnerabilities, and recommendations for improvements to ensure
the integrity and security of SmarDex.

The commit that was previously audited is https://github.com/SmarDex-Dev/smart-
contracts-updatable-fees/tree/dc05e390fbc86cd5ca9919a44f14dabd300389c4/
contracts

The commit which includes the updates is https://github.com/petra-foundation/
smardex-paladin-audit-2/tree/ff6016bea6ebb197b12a8bdf0c1d91d7e0a59fab/
contracts 

Page of 6 29 Paladin Blockchain Security

https://github.com/SmarDex-Dev/smart-contracts-updatable-fees/tree/dc05e390fbc86cd5ca9919a44f14dabd300389c4/contracts
https://github.com/SmarDex-Dev/smart-contracts-updatable-fees/tree/dc05e390fbc86cd5ca9919a44f14dabd300389c4/contracts
https://github.com/SmarDex-Dev/smart-contracts-updatable-fees/tree/dc05e390fbc86cd5ca9919a44f14dabd300389c4/contracts
https://github.com/SmarDex-Dev/smart-contracts-updatable-fees/tree/dc05e390fbc86cd5ca9919a44f14dabd300389c4/contracts
https://github.com/petra-foundation/smardex-paladin-audit-2/tree/ff6016bea6ebb197b12a8bdf0c1d91d7e0a59fab/contracts
https://github.com/petra-foundation/smardex-paladin-audit-2/tree/ff6016bea6ebb197b12a8bdf0c1d91d7e0a59fab/contracts
https://github.com/petra-foundation/smardex-paladin-audit-2/tree/ff6016bea6ebb197b12a8bdf0c1d91d7e0a59fab/contracts

1.3	 	 Contracts Assessed

Name Contract
Live Code
Match

SmardexFactory 0xB878DC600550367e14220d4916Ff678fB284214F

SmardexPair
0x007597aAF6A4E4652e7843aF5C44c359321368c2 
Also dependency (SmardexFactory)

SmardexLibrary
Dependency (SmardexFactory, SmardexPair,
AutoSwapper)

SmardexRouter 0xC33984ABcAe20f47a754eF78f6526FeF266c0C6F

Autoswapper 0x346c0cA93354383a31d78d4944290D51F3b3F920

FarmingRange Not deployed

RewardManagerWithdra
wable

Not deployed

PoolAddress Dependency (SmardexRouter)

PoolHelpers Dependency (SmardexRouter)

Staking Not deployed

MATCH

MATCH

N/A

MATCH

N/A

MATCH

N/A

MATCH

MATCH

MATCH

Page of 7 29 Paladin Blockchain Security

1.4		 Findings Summary

Classification of Issues

 

Severity Found Resolved
Partially
Resolved

Acknowledged
(no change made)

2 - - 2

0 - - -

1 - - 1

3 - - 3

0 - - -

Total 6 0 0 6

 Governance

 Medium

 Low

 High

 Informational

Severity Description

Issues under this category are where the governance or owners of the
protocol have certain privileges that users need to be aware of, some of which
can result in the loss of user funds if the governance’s private keys are lost or
if they turn malicious, for example.

Exploits, vulnerabilities or errors that will certainly or probabilistically lead
towards loss of funds, control, or impairment of the contract and its
functions. Issues under this classification are recommended to be fixed with
utmost urgency.

Bugs or issues that may be subject to exploit, though their impact is
somewhat limited. Issues under this classification are recommended to be
fixed as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the
project or its users. Issues under this classification are recommended to be
fixed nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level
of risk, if any.

 Governance

 Low

 Medium

 High

 Informational

Page of 8 29 Paladin Blockchain Security

1.4.1	 SmardexFactory

1.4.2	 SmardexPair

No issues found.

1.3.3	 SmardexLibrary

No issues found.

1.3.4	 SmardexRouter

1.3.5	 Autoswapper

ID Severity Summary Status

01 Invalid/malicious pair can be pushed into the factory storage

02 Pairs that were unintentionally not added cannot be added once
whitelist is closed

GOV

ACKNOWLEDGED

ACKNOWLEDGED

LOW

ID Severity Summary Status

03 Inconsistency when fetching pairs can result in issues

04 Safeguard might overflow

05 Potential mismatch in frontend and Solidity calculation can result in
transaction revert

ACKNOWLEDGED

LOW ACKNOWLEDGED

LOW

MEDIUM

ACKNOWLEDGED

ID Severity Summary Status

06 Contract owner can benefit from own swap ACKNOWLEDGEDGOV

Page of 9 29 Paladin Blockchain Security

1.3.6	 FarmingRange

No issues found.

1.3.7	 RewardManagerWithdrawable

No issues found.

1.3.8	 PoolAddress

No issues found.

1.3.9	 PoolHelpers

No issues found.

1.3.10	 Staking

No issues found.

Page of 10 29 Paladin Blockchain Security

2	 	 Findings

2.1	 SmardexFactory

The following diffchecker link highlights the changes which have been introduced:
https://www.diffchecker.com/D9WRS5v8/

Most notably, a whitelist mechanism was introduced in the updated contract:
modifiers have been aded to check if the whitelist is open or closed
(onlyIfWhitelistIsOpen, onlyIfWhitelistIsClosed).

Normal pair creation via the createPair function can now only be done if the
whitelist is closed. A closeWhitelist function allows the owner to close the
whitelist, and once the whitelist is closed, it can no longer be reopened. If the
whitelist is open, a pair assignment can only be done via the addPair function,
which basically pushes an already existing pair into the factory storage.

This logic was implemented to migrate existing pairs into the new factory storage.

Page of 11 29 SmardexFactory Paladin Blockchain Security

https://www.diffchecker.com/D9WRS5v8/

2.1.1		 Issues & Recommendations

Issue #01 Invalid/malicious pair can be pushed into the factory storage

Severity

Description Since the only input parameter for the addPair function is the _pair
address, the owner can simply input an invalid or malicious pair into
the factory’s storage. This can potentially result in issues down-
stream, and ultimately lost funds.

Furthermore, any migrated pairs should be added into the router’s
whitelist mechanism such that the PoolAddress.pairFor function
fetches the correct pair.

After reviewing the Router, an edge-case scenario was identified
where the governance is able to steal tokens that users have
approved to the router. Consider this PoC:

1. Call the addPair function and add a malicious contract which
exposes the correct interface.

2. Call the addPairToWhitelist function in the router with the
desired tokens, and it will now fetch the assigned address from
point 1 and assign this to the whitelist.

3. This contract can now call various functions within the Router,
including but not limited to smardexSwapCallback and
smardexMintCallback, potentially allowing this contract to steal
tokens from users which have approved them to the router.

Recommendation Consider strictly keeping an eye on the validity of the pairs that are
added.

Resolution

GOVERNANCE

ACKNOWLEDGED

Page of 12 29 SmardexFactory Paladin Blockchain Security

Issue #02 Pairs that were unintentionally not added cannot be added once
whitelist is closed

Severity

Description If the owner closes the whitelist without having all necessary pairs
added, it is impossible to add an existing pair to the factory storage
afterwards, which will then again result in down-stream issues.

Recommendation Consider being very careful with the migration and double-check if
all pairs have been migrated.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 13 29 SmardexFactory Paladin Blockchain Security

2.2	 	SmardexPair

The following diffchecker link highlights the changes which have been
introduced: https://www.diffchecker.com/9lUfKALr/

The only change to the pair contract was the addition of a skim function which
allows anyone to withdraw token0 and token1 from the pair as long as it is
uninitialized (totalSupply = 0).

2.2.2	 Issues & Recommendations

No issues found. 

Page of 14 29 SmardexPair Paladin Blockchain Security

https://www.diffchecker.com/9lUfKALr/

2.3	 	SmardexLibrary

The following diffchecker link highlights the changes which have been
introduced: https://www.diffchecker.com/GQ9mBjGP/

The approximateEqual function has been modified to immediately return true if
x=y. Within the contracts normal business logic, the previous functionality did not
have any issues; however, since the approximation value is 1/1 000 000, this
function will return false for values below 1 000 000. The reason for this can be
illustrated in the following example.

Assuming x = 100 000 and y = 100 000, the function should in fact return true
because the intent is to evaluate if both values are equal with a deviation of
0.0001%, which is in fact true here. However, in that scenario, the function will
move in to the else block, which executes the following calculation:

return _y < (_x + (_x * APPROX_PRECISION) / APPROX_PRECISION_BASE);

In actual fact, this function will return false, since 100 000 * 1 / 1 000 000 = 0,
hence x is not larger than y.

2.3.1	 Issues & Recommendations

No issues found. 

Page of 15 29 SmardexLibrary Paladin Blockchain Security

https://www.diffchecker.com/GQ9mBjGP/

2.4	 	SmardexRouter

The following diffchecker link highlights the changes which have been
introduced: https://www.diffchecker.com/oGUErdTb/

The following changes have been implemented:

- Whitelist functionality: As already mentioned within the SmardexFactory
contract, the contract owner can migrate old pairs to the new factory. It is
important to understand that the router contract usually fetches a corresponding
pair for a swap or liquidity execution directly from the factory or uses the pre-
deterministic nature of the deployment by using the factory address, salt and
init-code hash. However, as the pair is migrated and deployed via the old factory,
the pre-deterministic approach will return the pair which has or will be deployed
by the new factory. To counter this issue, the addPairToWhitelist function has
been implemented, which basically pushes the old pair address to the tokenHash
of the new pair address from the corresponding new factory. Whenever a swap or
liquidity execution is executed, the router will call the pairFor function from the
PoolAddress library, which in the first step checks if the corresponding
tokenHash has an old pair assigned and then returns the address of the migrated
pair.

1. Adjustment of the liquidity addition logic: The user is now allowed to pass the
following parameters to the function call:  
1. tokenA 
2. tokenB 
3. amountADesired 
4. amountBDesired 
5. amountAMin 
6. amountBMin 
7. fictiveReserveB 
8. fictiveReserveAMin 

Page of 16 29 SmardexRouter Paladin Blockchain Security

https://www.diffchecker.com/oGUErdTb/

9. fictiveReserveAMax 
 

These parameters allow the user to prevent any potential loss from a malicious
frontrunning transaction via the _product check within the _addLiquidity
function. 
 
The Smardex team described the mechanism as follows. 
 
Case 1:

1. The pool is currently empty.

2. Alice wants to add 100 USDT and 100 USDC of liquidity to the pool.

3. amountADesired = 100e18 and amountBDesired = 100e18, with a slippage
of 1%.

4. The frontend calculates the following parameters:  
 amountAMin = 99e18 
 amountBMin = 99e18 

 fictiveReservesB = 100e18 (the frontend will use amountBDesired) 
 fictiveReserveAMin = 99e18 

 fictiveReserveAMax = 101e18

If there is a front-running manipulation, the transaction will revert. This aligns
with the code snippet in the router.

 

Case 2:

1. The pool has liquidity.

2. The current reserves are at a 1:1 ratio of 100 USDT and 100 USDC.

3. fictiveReserveA = 50e18, fictiveReserveB = 50e18

4. Alice wants to add 1 USDT and 1 USDC with a slippage of 1%.

5. The frontend calculates the following parameters:  
 amountAMin = 0.99 
 amountBMin = 0.99  

 fictiveReserveB = 50e18 

Page of 17 29 SmardexRouter Paladin Blockchain Security

 fictiveReserveAMax = 49.5e18 

 fictiveReserveAMax = 50.5e18

If there is a front-running manipulation, the transaction will revert. This
aligns with the code snippet in the router.

It is important to mention that if a pool is already in such a state and users 	
willingly accept any price, this can still result in a loss of funds as shown in the
above two PoCs.

- Additionally, the following functions were included with permit logic:
swapExactTokensForETHWithPermit, swapTokensForExactETHWithPermit,
swapTokensForExactTokensWithPermit,
swapExactTokensForTokensWithPermit. The permit call was also wrapped into
a try/catch block.

Page of 18 29 SmardexRouter Paladin Blockchain Security

2.4.1	 Issues & Recommendations

Issue #03 Inconsistency when fetching pairs can result in issues

Severity

Description Whenever liquidity is added, the _addLiquidity function is
invoked, which fetches the pair from the factory and then fetches
the corresponding reserves for the pair to execute a slippage check

The slight issue here is that these two pair-fetching methodologies
are different — in the first method, the pair is fetched directly from
the factory and in the second one, the pair is fetched from the
PoolHelpers library.

In the scenario of a migrated but non-whitelisted pair, this will fetch
the address of the migrated pair in the first step but fetch the
address of the pair which will be deployed from the new factory in
the second step (deterministic approach).

This can result in issues depending on which pair the frontend uses
to fetch the reserves from. In the scenario where the frontend is
using the pairFor method to calculate the slippage parameters but
the user will in fact add liquidity to the migrated pair, then the
slippage check is totally void.

Recommendation Firstly, it must be ensured that all migrated pairs are whitelisted in
the router, and secondly, it might make sense to reconsider the
fetching logic. While it is great that the getPair function is used
instead of the pairOf function in the first step (pairFor would not
work here since it always returns a valid address even if the pair is
non-existent, which would prevent the creation of a new pair), it
must be ensured that no mismatch can occur here.

Furthermore, instead of updating two whitelists (one in the factory
and one in the router) consider using only one to prevent edge
cases. Consider removing the whitelist of the router and in
PoolAddress library and simply use the getPair function from the
factory. Note that this would only increase the gas cost slightly as a
storage read is already needed if using the router’s whitelist.

MEDIUM SEVERITY

Page of 19 29 SmardexRouter Paladin Blockchain Security

This would also make it easier for the SmarDex team to update the
pairs as currently, the pairs need to be whitelisted in the router first,
then in the factory as the router checks that the getPair function of
the factory returns the zero address.

Do note that for significant code changes in the resolution round, a
revalidation fee may apply.

Resolution ACKNOWLEDGED

Issue #04 Safeguard might overflow

Severity

Location require(_product <= _params.fictiveReserveAMax *

_reserveBFic, "SmarDexRouter: PRICE_TOO_HIGH”)

Description The above line might result in an overflow in the scenario of specific
tokens in the pair, such as tokens with 21 decimals or a very large
supply.

Recommendation Since this is a very specific edge-case, we recommend the SmarDex
team to undergo specific tests, especially tests with already existing
exotic pairs. Further considerations should be done if this scenario
in fact happens during these tests.

Resolution

LOW SEVERITY

ACKNOWLEDGED

Page of 20 29 SmardexRouter Paladin Blockchain Security

Issue #05 Potential mismatch in frontend and Solidity calculation can result in
transaction revert

Severity

Description Since the frontend presumably calculates values using JavaScript,
there might be issues if the pair is in such a state that a very low
amount of liquidity was added as potential calculations on the
Solidity side then round down and a mismatch occurs between the
JavaScript and Solidity calculations.

For small slippages, this might eventually revert when it should be
going through.

Recommendation Consider carefully examining this issue and eventually adjusting the
calculation on the frontend side to align with Solidity’s calculations.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 21 29 SmardexRouter Paladin Blockchain Security

2.5	 	Autoswapper

The following diffchecker link highlights the changes which have been
introduced: https://www.diffchecker.com/utJ65u9e/

The following changes have been implemented:

- The Ownable library has been inherited.

- A swapTokensWithPath function was implemented, which allows the owner to
swap any arbitrary token within the Autoswapper contract to the SmarDex token
with the StakingContract as recipient.

Page of 22 29 Autoswapper Paladin Blockchain Security

https://www.diffchecker.com/utJ65u9e/

2.5.1	 Issues & Recommendations

Issue #06 Contract owner can benefit from own swap

Severity

Description Whenever swapTokenWithPath is called, the owner can pass a
_amountOutMin parameter towards this function. This allows the
owner to potentially sandwich-attack their own swap and benefit
from it.

Recommendation Consider keeping a strong governance architecture.

Resolution

The Smardex team is a well-known and responsible team with
doxxed members and have also had a long track-record. Therefore,
we do not expect any malicious behavior.

ACKNOWLEDGED

GOVERNANCE

Page of 23 29 Autoswapper Paladin Blockchain Security

2.6	 	FarmingRange

The following diffchecker link highlights the changes which have been
introduced: https://www.diffchecker.com/A7ybYQHZ/

The following changes were introduced:

- The addRewardInfo function has been modified to not allow the distribution of
rewards retroactively and preventing rewards from being allocated to time ranges
that have already passed.

- A removeLastRewardInfoMultiple function has been implemented which allows
the owner to remove multiple rewardInfos from a campaign.

- The deposit function was modified to allow depositing on behalf of other users.

- The withdraw function was modified and now allows withdrawing rewards and
the staked amount to different addresses.

2.6.1	 Issues & Recommendations

No issues found.

Page of 24 29 FarmingRange Paladin Blockchain Security

https://www.diffchecker.com/A7ybYQHZ/

2.7	 	RewardManagerWithdrawable

The following diffchecker link highlights the changes which have been
introduced: https://www.diffchecker.com/IcZJUilj/

In summary, RewardManagerWithdrawable is the exact same contract as
RewardManagerL2, with the only difference being that the owner of the farming
contract can withdraw funds.

2.7.1	 Issues & Recommendations

No issues found.

Page of 25 29 RewardManagerWithdrawable Paladin Blockchain Security

https://www.diffchecker.com/IcZJUilj/

2.8	 	PoolAddress

The following diffchecker link highlights the changes which have been
introduced: https://www.diffchecker.com/L6IFhfgj/

The PoolAddress contract has been modified to handle the migration logic
correctly. The difference to the previous implementation is that the pairFor
function allows for a whitelist parameter which simply checks if the tokenHash has
already an assigned pair in the whitelist mapping. In that scenario, it means that the
returned pair address is the migrated pair which was deployed by the old factory. If
that is not the case, the deterministic address based on the new factory will be
returned.

It is important to double check the new init code hash —
c762a0f9885cc92b9fd8eef224b75997682b634460611bc0f2138986e20b653f —to
ensure that it is in fact the same as the initcode from the deployed factory, as the
init code can change based on compiler settings.

2.8.1	 Issues & Recommendations

No issues found.

Page of 26 29 PoolAddress Paladin Blockchain Security

https://www.diffchecker.com/L6IFhfgj/

2.9	 	PoolHelpers

The following diffchecker link highlights the changes which have been
introduced: https://www.diffchecker.com/6TxVmRUy/

The changes are as follows:

- The getReserves function was modified to support the migrated pairs. The
change is the same as that applied to the router: the pairFor function within the
PoolAddress library is now called with a whitelist parameter.

- The same change has been applied to the getFictiveReserves function.

- A getAllReserves function has been implemented, which fetches both the real
and the fictive reserves and returns them, while ensuring that the return order is
the same as the provided tokens. This function is used within the liquidity
addition of the router to ensure that liquidity is added for a correct pair state
(correct price/fictiveReserve ratio)

- The priceAverage function was modified to support migrated pairs.

2.9.1	 Issues & Recommendations

No issues found. 

Page of 27 29 PoolHelpers Paladin Blockchain Security

https://www.diffchecker.com/6TxVmRUy/

2.10	 	Staking

The following diffchecker link highlights the changes which have been
introduced: https://www.diffchecker.com/PyRSM0zm/

The only change is the modification of the deposit and harvest call to the
FarmingRange contract which now includes a third parameter for the to address.

2.10.1	 Issues & Recommendations

No issues found.

Page of 28 29 Staking Paladin Blockchain Security

https://www.diffchecker.com/PyRSM0zm/

Page of 29 29 Staking Paladin Blockchain Security

	Table of Contents
	Disclaimer
	1 Overview
	1.1 Summary
	1.2 Methodology
	1.3 Contracts Assessed
	1.4 Findings Summary
	1.4.1 SmardexFactory
	1.4.2 SmardexPair
	1.3.3 SmardexLibrary
	1.3.4 SmardexRouter
	1.3.5 Autoswapper
	1.3.6 FarmingRange
	1.3.7 RewardManagerWithdrawable
	1.3.8 PoolAddress
	1.3.9 PoolHelpers
	1.3.10 Staking

	2 Findings
	2.1 SmardexFactory
	2.1.1 Issues & Recommendations

	2.2 SmardexPair
	2.2.2 Issues & Recommendations

	2.3 SmardexLibrary
	2.3.1 Issues & Recommendations

	2.4 SmardexRouter
	2.4.1 Issues & Recommendations

	2.5 Autoswapper
	2.5.1 Issues & Recommendations

	2.6 FarmingRange
	2.6.1 Issues & Recommendations

	2.7 RewardManagerWithdrawable
	2.7.1 Issues & Recommendations

	2.8 PoolAddress
	2.8.1 Issues & Recommendations

	2.9 PoolHelpers
	2.9.1 Issues & Recommendations

	2.10 Staking
	2.10.1 Issues & Recommendations

